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1. はじめに 

『天気予報を見るように宇宙から草地の環境を見ることはできないだろうか？』―岐阜大学大学院時代に

恩師が投げかけてくれた問いである。約 20 年が経過した今，その問いかけが現実見を帯びてきている。当

時は夢物語に思えたが，リモートセンシング技術の進展と AI 解析の普及により，宇宙から牧草地の状態を

診断する具体的な試みが進んでいる。この背景には，人工衛星およびドローンや人工知能（AI）等の技術

の発展だけでなく，スマート農業に向けた社会情勢も追い風となって，周辺技術が急速に発展したことに他

ならない。 
本報では，まず（1）人工衛星を活用した草地管理における取組みと課題を整理し，（2）ドローンと機械学

習を活用した様々な取り組みについて紹介した後，（3）ドローンから人工衛星へスケールアップする取り組

みへの展望を述べる。 
 

2. 人工衛星データにおける 3 つの解像度との闘い 

リモートセンシングを用いた草地・農地診断には，空間解像度・時間解像度・分光解像度という 3 つの制

約が常に存在する。とりわけ人工衛星データでは，1 ピクセルが示す地表面積を意味する空間解像度と，同

一地点を再観測する周期である時間解像度の影響が大きく，解析精度を大きく左右する要因となる。 
北海道十勝地方のように大区画圃場が広がる地域では，1990 年代から人工衛星の農業利用に向けた先

駆的な研究が行われてきた。畠中・佐藤（1993）は Landsat TM データを用いて有効水分区分図を作成し，

岡野ら（1992）はマルチ時期データを活用して作物分類と作付体系の関係性を明らかにした。これらの成果

は，衛星リモートセンシング技術が広域農業モニタリングに有効であることを早期に示した事例といえる。そ

の後，2010 年代に入り，Sentinel-2 や Landsat 8 の打ち上げにより，空間解像度（10–30 m），観測頻度（5
〜16 日），および分光バンド数（10〜13 バンド）が大幅に向上した（Forkuor et al., 2018）。これにより，農地

スケールでの作物分類や植生指数（NDVI 等）の解析が精度良く実施できるようになり，草地や飼料作物モ

ニタリングへの応用が現実的なものとなってきた。また，上記の光学センサーの代替えまたは補完手段とｓi
いて，合成開口レーダー（SAR）を活用した飼料作物の生育診断も行われている（石塚・牧野, 2013; 牧野ら, 
2016）。しかし，牧草地特有の群落構造の多様性や小規模な雑草群落の存在を詳細に把握するには，依

然として限界が残されている。 
 空間解像度の観点から見ると，Sentinel-2（10 m）や PlanetScope（3–5 m）といった中分解能衛星では，牧

草地単位の微細な構造変化や局所的な雑草群落を識別するには不十分である。一方，WorldView や 
SPOT に代表される高分解能衛星は詳細な地表情報を提供できるものの，データ取得コストや観測頻度の

制約が大きい。さらに，人工衛星画像の多くは 1 ピクセル内に複数の地物（牧草，裸地，雑草群落など）が

混在する「混合ピクセル（mixed pixel）」として観測される。このため，特に草地のように空間的不均一性が高

い環境では，個々の植生要素を分離して識別することが困難となる。この課題に対し，線形混合解析

（Linear Mixture Analysis; LMA）が有効な手法として提案されてきた。LMA では，1 ピクセルの観測スペク

トルを複数の純粋スペクトル成分（endmembers）の線形結合として表現し，各構成要素の寄与率を推定する

ことで，混合ピクセルの分解を試みる（Roberts et al., 1998）。この手法は，衛星画像の空間分解能の限界を

補う解析アプローチとして植生モニタリングや土地被覆分類の分野で広く応用が進められているが，複数草

種からなる草地において，純粋スペクトル成分の情報を収集することは現実的ではない。 
時間解像度に関しては，牧草地の生育変化が数日単位で進行するのに対し，衛星観測は雲や通過周

期の影響を受けるため，必ずしも必要なタイミングでの情報取得が保証されない。また分光解像度の面では，

従来のマルチスペクトルセンサーでは草種識別や飼料品質推定に十分な情報を得ることが難しく，植生機

能の詳細な把握には限界がある（Mutanga and Skidmore, 2004）。 
これらの課題を克服するためには，ドローンによる高空間解像度データと地上分光観測による精密情報

を統合し，人工衛星データの補完・校正に活用するマルチスケール型アプローチが有効である。このような

統合解析により，衛星リモートセンシングの解像度制約を補い，牧草地における構造的・機能的特性のより



精緻なモニタリングが可能になると期待される。 
 
3. ドローンと AI の時代へ 

近年，ドローンに搭載可能な RGB カメラおよびマルチスペクトルカメラの性能向上により，数センチメート

ル単位の高空間解像度画像を容易に取得できるようになった。これにより，草地生態系における植生構成

や群落構造の可視化が飛躍的に進展している。 
我々の研究グループでは，ドローン画像を活用して牧草と雑草の空間分布を定量的に識別する手法の

開発を進めてきた。たとえば，オーチャードグラス主体草地を対象に，SLIC（Simple Linear Iterative 
Clustering）によるオブジェクトベース画像解析とランダムフォレスト分類（Random Forest classification）を組

み合わせる手法を構築し，牧草と雑草の分布（Yuba et al., 2020 およびマメ科率の分布（Kawamura et al., 
2024b）を高精度に抽出できることを明らかにした。さらに，YOLO（You Only Look Once）などのディープラー

ニングに基づく物体検出アルゴリズムを応用し，エゾノギシギシ（Rumex obtusifolius）など特定の侵入雑草の

局所的分布を自動検出できることを示した（垣内ら, 2024）（図 1 右）。また，放牧地の物質循環や草地利用

率の評価において重要な指標である牛糞の空間分布も，ドローン画像から自動検出する試みも進めている

（Kawamura et al., 2024a）（図 1 左）。これらの成果は，草地モニタリングにおける AI 技術の有効性を示すと

ともに，人工衛星データ解析における教師データとして活用可能である点に大きな意義を有する。 
 

 
図 1. ドローン画像による牛糞（左）とエゾノギシギシ（右）の自動検出例. 

 
また，ドローン観測は植生分類にとどまらず，群落高（surface sward height）や地上部バイオマスの推定に

も応用可能である。ドローン画像から得られた群落高と地上で測定した乾物重との関係を解析した結果，非

破壊的かつ高精度に牧草収量を推定できる可能性が示された（大越ら, 2024）。この手法により，従来の刈り

取り調査に比べて作業負担を大幅に軽減しつつ，広域草地における収量推定の効率化が期待される。 
地上およびドローンレベルで取得される高精度データは，人工衛星観測の補完および校正において不

可欠な役割を果たす。これらのデータを統合的に利用することにより，ドローンから衛星スケールへと展開す

るマルチスケール統合解析が可能となり，牧草地の構造的・機能的変動の理解に新たな展開をもたらすと

考えられる。 
 

4. ドローンから人工衛星へスケールアップ 

近年，無人航空機（UAV, ドローン）によって取得される高解像度画像を人工衛星データと統合し，広域

スケールへ外挿する研究が国内外で進展している。我々のグループにおいても，Sentinel-2 データにドロー



ン由来の植生指標および分類結果を教師データとして深層学習モデルに組み込み，ピクセルレベルでの

牧草種組成および草量推定技術の開発を進めている（特願 2025-003531）。 
このスケールアップを実現する上で重要となるのは，人工衛星画像の 1 ピクセルを「現実の地表構成要素

の線形結合」として解釈し，そのスペクトル特性を精緻に再現することである。ドローン画像から得られる高解

像度の植生分布情報を基に，衛星ピクセル内に含まれる牧草・マメ科・雑草・裸地などの構成比を定量的に

推定し，それを衛星反射スペクトルに対応付けることにより，広域スケールで適用可能な植生判別 AI の教

師データを構築することができる（図 2）。すなわち，ドローン観測は衛星リモートセンシングにおける「空間解

像度の壁」を克服し，ピクセル分解能の理論的限界を補完する役割を果たす。 
将来的には，人工衛星による高頻度・広域観測を基盤とし，ドローンおよび地上分光観測による高精度

データを統合したマルチスケール解析フレームワークの構築が求められる。このアプローチは，牧草生産量

の時空間変動の把握や放牧管理の最適化のみならず，温室効果ガス排出抑制や生態系サービス評価な

ど，持続的草地利用に関わる多面的指標の定量化にも寄与する可能性を有する。 
 このように，ドローンから人工衛星へのスケールアップは，単なる観測技術の連携にとどまらず，研究対象

を「点的・局所的な観測」から「広域・時系列的な地表変動解析」へと拡張する新たな試みである。この概念

を北海道内の採草地に適用し，人工衛星とドローンの利点を統合した「植生判別 AI」および「草量推定 AI」
の開発と実証については，本セッションの田中氏（植生判別）と秋山氏（草量推定）による報告を参照いただ

きたい。 
 

 

図 2. ドローンの植生判別結果を教師データとした深層学習による人工衛星へのスケールアップ概念図. 
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